OPENSSL 3.0 SUPPORTED ENCRYPTION CIPHERS: A 5-
PAGE ANALYSIS

PAGE 1: INTRODUCTION TO OPENSSL 3.0 CIPHERS AND MODERN TLS

OpenSSL 3.0 represents a significant evolution in cryptographic library capabilities,
focusing on enhanced security, performance, and maintainability. A critical aspect
of secure communication, especially within TLS/SSL protocols, is the choice of
cipher suites. Cipher suites are complex sets of algorithms that define the security
parameters for a network connection, including key exchange, authentication, bulk
encryption, and integrity checks. OpenSSL 3.0 emphasizes modern, robust
algorithms while deprecating older, weaker ones, aligning with current industry
best practices and the latest RFC standards.

This analysis explores the encryption ciphers supported by OpenSSL 3.0, examining
their strengths, weaknesses, and suitability for various applications. We will cover
symmetric encryption, asymmetric key exchange, and hashing algorithms that
form the backbone of secure connections.

PAGE 2: MODERN SYMMETRIC ENCRYPTION ALGORITHMS

Symmetric encryption algorithms are crucial for encrypting the bulk data
transmitted over a secure channel. OpenSSL 3.0 strongly favors algorithms offering
both confidentiality and integrity, often in authenticated encryption with associated
data (AEAD) modes.

* AES (Advanced Encryption Standard): Remains the cornerstone of
symmetric encryption. OpenSSL 3.0 fully supports AES in various key lengths
(128, 192, 256 bits). The most recommended modes are:

o AES-GCM (Galois/Counter Mode): An AEAD mode that provides both
confidentiality and authenticity. It is highly performant and widely
adopted in modern TLS versions (TLS 1.2, 1.3).

o AES-CCM (Counter with CBC-MAC): Another AEAD mode, also secure
and efficient, but GCM is generally preferred for its performance
characteristics.

* ChaCha20-Poly1305: Introduced as a modern, high-performance alternative
to AES, especially on platforms lacking hardware AES acceleration. ChaCha20
is a stream cipher, and Poly1305 is its companion authenticator. This



combination provides strong confidentiality and authenticity and is a standard
option in TLS 1.3.

Algorithms like RC4, DES, and 3DES are considered insecure and are either
removed or strongly discouraged in OpenSSL 3.0, reflecting a commitment to
modern security standards.

PAGE 3: KEY EXCHANGE MECHANISMS

Securely establishing a shared secret key between two parties is fundamental to
cryptographic protocols. OpenSSL 3.0 supports several key exchange mechanisms,
with a strong emphasis on forward secrecy.

« ECDHE (Elliptic Curve Diffie-Hellman Ephemeral): This is the preferred
method for key exchange in modern TLS. ECDHE provides forward secrecy,
meaning that even if a server's long-term private key is compromised in the
future, past communication sessions encrypted with keys derived from ECDHE
will remain secure. OpenSSL 3.0 supports various elliptic curves, including
NIST curves and custom curves, with P-256, P-384, and P-521 being common
choices for their security strength.

* DHE (Diffie-Hellman Ephemeral): A non-elliptic curve variant that also
provides forward secrecy. While still supported, it is generally less performant
than ECDHE and requires larger key sizes for comparable security.

* RSA Key Encapsulation: In older TLS versions, RSA was often used for key
exchange where the client encrypts a pre-master secret with the server's
public RSA key. However, this method does not provide forward secrecy and is
considered insecure for key exchange in modern deployments. OpenSSL 3.0
continues to support RSA for certificates and signing but discourages its use
for TLS key exchange.

OpenSSL 3.0's configuration defaults and recommendations heavily favor ECDHE
for its security and efficiency advantages.

PAGE 4: AUTHENTICATION AND HASH FUNCTIONS

Message integrity and server/client authentication are critical. Hash functions play
a dual role: they are used in digital signatures to verify identity and within cipher
suites to ensure data integrity.

* Hashing Algorithms: OpenSSL 3.0 supports a range of secure hash functions,
with SHA-2 family (SHA-256, SHA-384, SHA-512) being the current standard.



SHA-3 is also supported. Older hash functions like MD5 and SHA-1 are
considered cryptographically broken for signature purposes and are
deprecated or removed for security-sensitive operations.

* Cipher Suites (Examples): The combination of algorithms forms a cipher
suite. OpenSSL 3.0 prioritizes suites using modern components. Examples
include:

o "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384": Uses ECDHE for key
exchange, RSA for authentication (via certificate), AES-256 for encryption
in GCM mode, and SHA384 for integrity.

o "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256": Uses ECDHE
for key exchange, ECDSA for authentication, ChaCha20-Poly1305 for
encryption/integrity, and SHA256.

o "TLS_AES_256_GCM_SHA384" (TLS 1.3 specific): A simplified suite using
ECDHE (implicit in TLS 1.3), AES-256-GCM, and SHA384.

The selection of strong hash functions alongside robust encryption and key
exchange is paramount for overall security.

PAGE 5: DEPRECATED CIPHERS AND BEST PRACTICES

OpenSSL 3.0 actively moves away from outdated and insecure cryptographic
primitives. Administrators and developers must be aware of these changes to
maintain secure systems.

* Deprecated/Removed Ciphers: OpenSSL 3.0 has removed or heavily
discouraged the use of ciphers like RC4, DES, 3DES, MD5, and SHA1 in TLS
contexts due to known vulnerabilities. Configurations that rely on these
algorithms are highly insecure.

* TLS 1.3: OpenSSL 3.0 fully embraces TLS 1.3, which simplifies cipher suites,
removes older, weaker ciphers, and mandates forward secrecy. It offers
improved performance and security.

* Configuration Guidance: It is recommended to configure servers and clients
to prioritize TLS 1.2 and TLS 1.3 with strong cipher suites. This typically
involves disabling older TLS versions (SSLv3, TLS 1.0, TLS 1.1) and limiting the
cipher suite list to modern AEAD ciphers (like AES-GCM, ChaCha20-Poly1305)
combined with ECDHE key exchange.

* Regular Updates: Keeping OpenSSL updated is crucial, as new vulnerabilities
may be discovered, and best practices evolve. OpenSSL 3.0 provides a robust
foundation, but its secure application depends on proper configuration and
ongoing maintenance.

Da\)LcQ (@tﬁ th "twu%" v



	OpenSSL 3.0 Supported Encryption Ciphers: A 5-Page Analysis
	Page 1: Introduction to OpenSSL 3.0 Ciphers and Modern TLS
	Page 2: Modern Symmetric Encryption Algorithms
	Page 3: Key Exchange Mechanisms
	Page 4: Authentication and Hash Functions
	Page 5: Deprecated Ciphers and Best Practices


		2025-09-26T22:11:39-0400




