
OPENSSL 1.1.1 DEPRECATION AND UPGRADE GUIDE TO
OPENSSL 3.X

Audience: security leads, SREs, platform engineers, compliance, and developers
maintaining software linked against OpenSSL 1.1.1.

EXECUTIVE SUMMARY

OpenSSL 1.1.1 reached End of Life (EOL) on September 11, 2023. EOL means it no
longer receives security updates or bug fixes from the OpenSSL project. Remaining
on 1.1.1 exposes organizations to unpatched vulnerabilities, compliance findings,
and vendor support issues. Migrate to OpenSSL 3.x—preferably 3.0 LTS for stability
and FIPS options, or a newer supported 3.x release for features and performance.

WHAT EOL/DEPRECATION MEANS

No security fixes: New vulnerabilities discovered after EOL will not be
patched in 1.1.1.
No bug fixes: Functional defects and regression issues remain unresolved.
No official support: Upstream maintainers will direct you to upgrade; many
vendors follow suit.
Compliance risk: EOL crypto components commonly trigger audit and policy
findings.

RISKS OF REMAINING ON OPENSSL 1.1.1

Unpatched CVEs: Any newly discovered weaknesses post-EOL remain
exploitable on 1.1.1-based systems.
Supply chain exposure: Images and dependencies pinned to 1.1.1 increase
SBOM and vulnerability scanner alerts.
Weak/legacy crypto usage: 1.1.1 may still allow legacy algorithms and
ciphers that are disabled or isolated in 3.x.
Compliance and certification gaps: Modern standards prefer actively
maintained crypto libraries; FIPS validation pathways center on OpenSSL 3.x.

•

•
•

•

•

•

•

•

Vendor ecosystem: Tooling and SDKs increasingly assume 3.x APIs and
features (Providers, FIPS module).

KNOWN ISSUES AND SECURITY GAPS IN THE 1.1.1 BRANCH

EOL status: No backported fixes after Sept 2023; any future protocol or
implementation weaknesses will persist.
Legacy mechanisms: Engines and certain deprecated algorithms remain in
use; 3.x moves them to the legacy provider to discourage accidental reliance.
FIPS limitations: Practical FIPS pathways for modern OpenSSL are in the 3.x
series (via the 3.x FIPS provider), not 1.1.1.
Hardening gaps: Ongoing side‑channel mitigations, stricter defaults, and
policy controls land in 3.x; 1.1.1 will not receive these improvements.

OPENSSL SUPPORT LIFECYCLE SNAPSHOT

Series Status Security Fixes End Notes

1.1.1 EOL Sept 11, 2023 No further updates

3.0 (LTS) Supported
Planned through Sept 2026
(LTS)

FIPS provider available

3.1/3.2/3.3
Supported (non-
LTS)

Per-series window
Features, performance, QUIC
(from 3.1)

BENEFITS OF UPGRADING TO OPENSSL 3.X

Active security maintenance: Timely patches for vulnerabilities.
Provider architecture: Clean separation of approved and legacy algorithms
via providers (default, legacy, FIPS, etc.).
FIPS module: FIPS 140-3 validated module pathway for compliance-sensitive
environments (3.0+).
Stronger defaults: Tighter algorithm policies and easier enforcement of
crypto standards.
Modern features: QUIC support (3.1+), improved algorithm implementations,
ongoing performance and hardening work.

•

•

•

•

•

•
•

•

•

•

UPGRADE PLANNING CHECKLIST

Inventory: Identify all binaries and libraries linked with OpenSSL 1.1.1 (apps,
proxies, agents, containers, OS images).
Select target: Choose 3.0 LTS for stability/FIPS; or 3.2/3.3 if you need newer
features and are comfortable with non-LTS cadence.
Assess crypto policy: Decide whether to enable the legacy provider
temporarily; define acceptable algorithms and key sizes.
FIPS needs: Determine if your environment requires the 3.x FIPS provider and
plan validation and configuration steps.
Map APIs: Replace deprecated low-level crypto calls with EVP APIs; migrate
ENGINE usage to Providers.
Build system: Update toolchains, pkg-config, CI images, and cross-compile
targets to link against 3.x.
Testing: Run unit, integration, TLS interoperability, and performance tests;
enable strict cipher and cert policy tests.
Rollout: Stage deployments with canaries and feature flags; implement
rollback and monitoring.

TECHNICAL MIGRATION GUIDE

API AND ARCHITECTURAL CHANGES

Providers replace ENGINE: The ENGINE framework is deprecated; use
providers to load algorithms (default, legacy, FIPS).
Prefer EVP layer: Low-level crypto (e.g., direct RSA/MD APIs) is deprecated;
use EVP_PKEY, EVP_MD, EVP_CIPHER, EVP_KDF, EVP_MAC.
Algorithm availability: Legacy algorithms (e.g., MD4/MD5, RC4, DES, some
SHA-1 uses) may require enabling the legacy provider explicitly.
Randomness: Use EVP_RAND abstractions; avoid direct RAND_bytes if your
design relies on specific DRBG instances.
Version checks: Use OPENSSL_version_major() or feature detection to
branch behavior when necessary.

1.

2.

3.

4.

5.

6.

7.

8.

•

•

•

•

•

CONFIGURATION EXAMPLES

Enable the legacy provider temporarily (system-wide openssl.cnf):

openssl.cnf (OpenSSL 3.x)
config_diagnostics = 1
[openssl_init]
providers = provider_sect
alg_section = algorithm_sect
[provider_sect]
default = default_sect
legacy = legacy_sect
[default_sect]
activate = 1
[legacy_sect]
activate = 1
[algorithm_sect]
Optional: raise security level, tune ciphers, etc.

Recommendation: Use the legacy provider only as a transitional aid; remove it once
dependencies are updated.

Programmatically load providers (C):

OSSL_PROVIDER *def = OSSL_PROVIDER_load(NULL, "default");
OSSL_PROVIDER *leg = OSSL_PROVIDER_load(NULL, "legacy");
/* ... use EVP APIs ... */
OSSL_PROVIDER_unload(leg);
OSSL_PROVIDER_unload(def);

EVP-based signing (replacing low-level RSA):

EVP_PKEY *pkey = /* load key */;
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
EVP_DigestSignInit(ctx, NULL, EVP_sha256(), NULL, pkey);
EVP_DigestSignUpdate(ctx, data, data_len);
EVP_DigestSignFinal(ctx, sig, &sig_len);
EVP_MD_CTX_free(ctx);

TLS AND CIPHER POLICY

Prefer TLS 1.2+; disable TLS 1.0/1.1 if still enabled in your stack.
Strong suites: Prefer ECDHE and AEAD (e.g., TLS 1.2 with ECDHE-ECDSA-
AES128-GCM-SHA256; TLS 1.3 suites are predefined and strong by default).
Certificate policy: Avoid SHA‑1 signatures; use SHA‑256+ and 2048-bit+ RSA
or ECDSA with P‑256/P‑384.
Security level: Consider raising OpenSSL security level (e.g., to 2) where
interoperability permits.

FIPS 140-3 CONSIDERATIONS (3.X)

OpenSSL 3.x supports a FIPS provider that, when properly installed and
configured, enforces FIPS-approved algorithms.
Follow project/vendor guidance to install the validated module and lock
configuration.
Audit that applications do not require legacy algorithms once FIPS mode is
enabled.

TESTING AND ROLLOUT STRATEGY

Build matrix: Test across your supported OS/arch combinations.
Interop tests: Validate TLS handshakes with major peers (web servers,
proxies, databases, message brokers).
Negative tests: Ensure disallowed algorithms/ciphers correctly fail.
Performance: Benchmark CPU profiles and latency; some algorithms may
differ in performance.
Staged deploy: Canary, observe, then gradually expand. Keep rollback images
with 3.x-linked binaries.

COMMON PITFALLS

Hidden dependencies: Third-party libraries may dynamically load 1.1.1; scan
containers and LD paths.
ENGINE reliance: HSM/KMS integrations via ENGINE need provider-based
alternatives or vendor updates.

•
•

•

•

•

•

•

1.
2.

3.
4.

5.

•

•

Algorithm availability: Builds fail or runtime errors occur if legacy algorithms
are assumed but not enabled.
Policy drift: Inconsistent openssl.cnf across hosts leads to surprising
behavior; standardize config.

MIGRATION DECISION TABLE

Requirement Recommendation

Long-term stability, FIPS option OpenSSL 3.0 LTS

Newest features/perf (willing to track updates) OpenSSL 3.2/3.3

Legacy algorithms temporarily needed Enable legacy provider during migration only

Strict compliance Use FIPS provider, disable legacy provider

ACTION ITEMS

Set an organizational deadline to remove OpenSSL 1.1.1 from all production
systems.
Adopt OpenSSL 3.0 LTS (or newer supported 3.x) across builds and base
images.
Replace deprecated APIs with EVP and remove ENGINE usage.
Establish crypto policy baselines and continuous compliance checks.

REFERENCES

OpenSSL Project: Release and support policies (EOL dates)
OpenSSL 3.x Migration Guide and Provider documentation
FIPS 140-3 guidance for OpenSSL 3.x

ASSUMPTIONS

You require a maintained, supported crypto stack and either LTS stability (3.0)
or newer features (3.2/3.3).

•

•

•

•

•
•

•
•
•

•

Some environments may temporarily need legacy algorithms; you will phase
them out post-migration.

•

	OpenSSL 1.1.1 Deprecation and Upgrade Guide to OpenSSL 3.x
	Executive Summary
	What EOL/Deprecation Means
	Risks of Remaining on OpenSSL 1.1.1
	Known Issues and Security Gaps in the 1.1.1 Branch
	OpenSSL Support Lifecycle Snapshot
	Benefits of Upgrading to OpenSSL 3.x
	Upgrade Planning Checklist
	Technical Migration Guide
	API and Architectural Changes
	Configuration Examples
	TLS and Cipher Policy
	FIPS 140-3 Considerations (3.x)
	Testing and Rollout Strategy
	Common Pitfalls
	Migration Decision Table
	Action Items
	References
	Assumptions

		2025-09-28T16:08:07-0400

