
CONFIGURING MOD_FCGID ON WINDOWS APACHE 2.4
FOR HIGH-CONCURRENCY WORKLOADS

This guide provides an end-to-end, production-focused setup for mod_fcgid on
Windows with Apache HTTP Server 2.4, optimized for high concurrency. It covers
installation, sizing, tuning, validation, and troubleshooting. Examples emphasize
PHP via php-cgi.exe, but the methodology applies to other FastCGI apps.

1) PREREQUISITES AND ASSUMPTIONS

Windows Server 2016/2019/2022 (or Windows 10/11) with Apache 2.4.x
installed under C:/Apache24.
Administrative rights to install modules and create directories.
For PHP: using php-cgi.exe (Non-Thread-Safe build) located at C:/PHP.
Antivirus is configured to exclude Apache, PHP, and temp directories from on-
access scanning (important for high I/O).

2) INSTALL AND ENABLE MOD_FCGID

Download a mod_fcgid binary compatible with your Apache 2.4 and VC
runtime (e.g., from Apache Lounge). Ensure matching architecture (x64) and
Visual C++ runtime.
Place mod_fcgid.so into C:/Apache24/modules/.
Create a temp and IPC directory for mod_fcgid:
C:/Apache24/temp/fcgid and C:/Apache24/logs/fcgid (ensure Apache
service account has read/write).
In httpd.conf, enable the module and base settings:
LoadModule fcgid_module modules/mod_fcgid.so
FcgidIPCDir "C:/Apache24/temp/fcgid"
FcgidProcessTableFile "C:/Apache24/logs/fcgid/fcgid_shm"
FcgidWin32PreventOrphans On
FcgidFixPathinfo 1 (often required for PHP PATH_INFO)
Restart Apache to confirm there are no load errors.

•

•
•
•

1.

2.
3.

4.

5.

3) CORE APACHE (MPM) CONCURRENCY ON WINDOWS

Windows uses the mpm_winnt MPM (one process, many threads). Concurrency is
primarily controlled via ThreadsPerChild and MaxRequestWorkers.

ThreadsPerChild: Typically 150-500. Controls worker threads in the single
child process.
MaxRequestWorkers: In Windows, equals ThreadsPerChild. Set sufficiently
above expected concurrent connections (consider static + dynamic requests).

Example in httpd-mpm.conf or httpd.conf:

ThreadsPerChild 400
MaxRequestWorkers 400
ListenBacklog 1024

Set KeepAlive judiciously. For high concurrency with many short requests, try:

KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 2

4) MAPPING APPLICATIONS WITH MOD_FCGID

For PHP via php-cgi.exe (Non-Thread-Safe), in a global context or VirtualHost:

<IfModule fcgid_module>
Map PHP scripts to FastCGI wrapper
AddHandler fcgid-script .php
FcgidWrapper "C:/PHP/php-cgi.exe" .php

Pass environment to PHP
FcgidInitialEnv PHPRC "C:/PHP"
FcgidInitialEnv PATH "C:/Windows/System32;C:/Windows;C:/PHP"
FcgidInitialEnv TEMP "C:/Apache24/temp"
FcgidInitialEnv TMP "C:/Apache24/temp"
FcgidPassHeader Authorization
</IfModule>

Note: On Windows, PHP_FCGI_CHILDREN is not used by php-cgi; concurrency is
controlled by mod_fcgid process counts.

•

•

5) CAPACITY PLANNING AND SIZING

Key parameters to size for high concurrency:

MaxRequestWorkers (Apache threads): upper bound of concurrent
connections (static + dynamic).
FcgidMaxProcesses: global limit of all FastCGI processes (all classes).
FcgidMaxProcessesPerClass: limit per wrapper (e.g., per PHP app).
FcgidIOTimeout, FcgidConnectTimeout, FcgidBusyTimeout: resilience
under load.
FcgidProcessLifeTime, FcgidMaxRequestsPerProcess (via app env like
PHP_FCGI_MAX_REQUESTS): recycling.

Simple sizing approach:

Estimate peak concurrent dynamic requests (e.g., PHP), call it CD.
Determine average requests per CGI process simultaneously served: with
php-cgi on Windows this is one request per process.
Set FcgidMaxProcessesPerClass ≥ CD and FcgidMaxProcesses ≥ sum
across apps (with headroom 10–30%).
Set MaxRequestWorkers ≥ max(static + dynamic). If static offload (CDN),
lower; otherwise include static.

Example: If 250 concurrent PHP requests are expected and 50 static, choose:
MaxRequestWorkers 350, FcgidMaxProcessesPerClass 260, FcgidMaxProcesses
300.

6) RECOMMENDED MOD_FCGID BASELINE FOR HIGH CONCURRENCY

Add to global scope (httpd.conf) or inside the VirtualHost serving the app:

Global FastCGI process limits
FcgidMaxProcesses 400
FcgidMaxProcessesPerClass 350
FcgidMinProcessesPerClass 4
FcgidProcessLifeTime 3600
FcgidMaxRequestInMem 131072 # 128 KB before temp file
FcgidMaxRequestLen 268435456 # 256 MB uploads

Timeouts and scans
FcgidConnectTimeout 10
FcgidIOTimeout 120

•

•
•
•

•

1.
2.

3.

4.

FcgidBusyTimeout 300
FcgidBusyScanInterval 120
FcgidErrorScanInterval 5
FcgidZombieScanInterval 5

Output buffering
FcgidOutputBufferSize 65536
FcgidFlushDelay 0

IPC and Windows resiliency
FcgidWin32PreventOrphans On
FcgidIPCDir "C:/Apache24/temp/fcgid"

Notes:

FcgidMaxRequestLen must be large enough for file uploads; align with app
limits.
FcgidIOTimeout: must exceed worst-case app time; too low causes 500s.
FcgidProcessLifeTime: recycle to mitigate memory leaks; match with
PHP_FCGI_MAX_REQUESTS if used.

7) PHP-SPECIFIC STABILITY SETTINGS

Set in Apache via environment (per vhost or global):

FcgidInitialEnv PHP_FCGI_MAX_REQUESTS 1000 # recycle php-cgi
after N requests
FcgidInitialEnv PHP_MAX_EXECUTION_TIME 120

Also in php.ini (C:/PHP/php.ini):

max_execution_time = 120
memory_limit = 256M (or per sizing)
upload_max_filesize = 128M
post_max_size = 128M
cgi.fix_pathinfo = 1

8) VIRTUALHOST EXAMPLE (PRODUCTION)

<VirtualHost *:80>
ServerName www.example.com
DocumentRoot "C:/Sites/example/htdocs"

•

•
•

Static files (serve directly)
<Directory "C:/Sites/example/htdocs">
Options Indexes FollowSymLinks
AllowOverride All
Require all granted
</Directory>

PHP via mod_fcgid
AddHandler fcgid-script .php
FcgidWrapper "C:/PHP/php-cgi.exe" .php
FcgidInitialEnv PHPRC "C:/PHP"
FcgidInitialEnv PHP_FCGI_MAX_REQUESTS 1000
FcgidInitialEnv TEMP "C:/Apache24/temp"
FcgidInitialEnv TMP "C:/Apache24/temp"
FcgidPassHeader Authorization

Per-vhost tuning (optional override)
FcgidMaxProcessesPerClass 260
FcgidMinProcessesPerClass 6
FcgidIOTimeout 120

ErrorLog "logs/example-error.log"
CustomLog "logs/example-access.log" combined
</VirtualHost>

9) PERFORMANCE TUNING WORKFLOW

Baseline: Start with the recommended settings above. Confirm stability with a
smoke test.
Load test: Use a realistic tool (k6, JMeter, wrk) simulating think time,
connection reuse, and mixed payloads (static+dynamic).
Measure under increasing concurrency: p95/p99 latency, error rate, CPU,
memory, context switches, and php-cgi.exe count.
Adjust size:

If 503/500 under load with php-cgi saturation: raise
FcgidMaxProcessesPerClass and FcgidMaxProcesses (watch RAM).
If long queues but spare CPU: increase MaxRequestWorkers and
corresponding Fcgid* limits.
If memory pressure: reduce processes, shorten ProcessLifeTime, and
lower PHP memory_limit or app caches.

Timeouts: Tune FcgidIOTimeout and BusyTimeout to be slightly above worst-
case app times to avoid premature kills.

1.

2.

3.

4.
◦

◦

◦

5.

Recycling: Set PHP_FCGI_MAX_REQUESTS and FcgidProcessLifeTime to
mitigate leaks; stagger restarts under load.

10) WINDOWS-SPECIFIC CONSIDERATIONS

File paths: Use forward slashes or escaped backslashes. Quote paths with
spaces.
Antivirus: Exclude C:/Apache24, C:/PHP, site directories, and C:/Apache24/
temp from real-time scanning.
I/O temp dir: Place FcgidIPCDir and TEMP on a fast local SSD. Avoid network
shares for code or temp.
Service account: Ensure the Apache service account has Modify permissions
on temp/log/IPC paths.
Event Viewer: Check Windows Event Viewer for crashes of php-cgi.exe during
stress.

11) MONITORING AND OBSERVABILITY

mod_status: Enable server-status to view busy/idle workers and request
states.
LoadModule status_module modules/mod_status.so
<Location /server-status> SetHandler server-status Require
local </Location>
Logs: Inspect Apache error.log for mod_fcgid timeouts (IOTimeout,
BusyTimeout) and spawn failures.
Process count: Monitor php-cgi.exe instances to confirm
FcgidMaxProcessesPerClass behavior.
App metrics: Expose application response times and error rates; correlate
with web server metrics.

12) SECURITY AND HARDENING

Limit uploads: Set FcgidMaxRequestLen, post_max_size, and
upload_max_filesize consistently.
Restrict execution: Use file system ACLs to limit where CGI binaries can
execute.
Timeouts: Prefer conservative timeouts plus app-level circuit breakers.

6.

•

•

•

•

•

•

•

•

•

•

•

•

Headers: Add security headers via mod_headers (X-Frame-Options, X-
Content-Type-Options, etc.).
Isolation: Consider separate VirtualHosts and wrappers for different apps to
isolate resource pools.

13) TROUBLESHOOTING COMMON ISSUES

500 with Premature End of Script Headers: Increase FcgidIOTimeout; verify
php.ini syntax; check PHP error logs.
503 Service Unavailable: FcgidMaxProcessesPerClass too low; raise limits or
reduce concurrency.
Spawn failed / No such file: Wrong path quoting or permissions; verify
FcgidWrapper path and service account rights.
Stalls on uploads: Increase FcgidMaxRequestLen; ensure temp directories
have space and correct permissions.
Memory growth: Lower PHP memory_limit; decrease
PHP_FCGI_MAX_REQUESTS or FcgidProcessLifeTime for faster recycling.

14) QUICK REFERENCE: KEY DIRECTIVES AND SUGGESTED RANGES

Directive Purpose Suggested Starting Point

FcgidMaxProcesses Global FastCGI process cap 1.2 × peak dynamic concurrency

FcgidMaxProcessesPerClass Per app/wrapper cap ≈ peak app concurrency

FcgidMinProcessesPerClass Warm pool size 2–8

FcgidIOTimeout Backend read/write timeout 60–180s (app-dependent)

FcgidBusyTimeout Kill long-busy processes 180–600s

FcgidProcessLifeTime Recycle age 1800–7200s

FcgidOutputBufferSize App output buffer 64 KB

FcgidMaxRequestLen Max upload size 256 MB (align with app)

ThreadsPerChild Apache worker threads 200–600

MaxRequestWorkers Max concurrent connections Match ThreadsPerChild

•

•

•

•

•

•

•

15) VALIDATION CHECKLIST

Apache starts without errors; mod_fcgid loaded.
server-status shows expected worker counts.
Load test achieves target concurrency with acceptable p95 latency.
php-cgi.exe process count scales up to FcgidMaxProcessesPerClass and
recycles over time.
No persistent 500/503 errors under steady load.

APPENDIX: EXAMPLE FULL MINIMAL CONFIG SNIPPET

httpd.conf (relevant parts)
LoadModule fcgid_module modules/mod_fcgid.so
LoadModule status_module modules/mod_status.so
ThreadsPerChild 400
MaxRequestWorkers 400
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 2

FcgidIPCDir "C:/Apache24/temp/fcgid"
FcgidProcessTableFile "C:/Apache24/logs/fcgid/fcgid_shm"
FcgidWin32PreventOrphans On
FcgidFixPathinfo 1
FcgidMaxProcesses 400
FcgidMaxProcessesPerClass 350
FcgidMinProcessesPerClass 6
FcgidIOTimeout 120
FcgidBusyTimeout 300
FcgidConnectTimeout 10
FcgidProcessLifeTime 3600
FcgidOutputBufferSize 65536
FcgidMaxRequestLen 268435456

<Location /server-status> SetHandler server-status Require local
</Location>

VirtualHost for PHP app
<VirtualHost *:80>
ServerName www.example.com
DocumentRoot "C:/Sites/example/htdocs"

•
•
•
•

•

<Directory "C:/Sites/example/htdocs"> Options Indexes
FollowSymLinks AllowOverride All Require all granted </Directory>
AddHandler fcgid-script .php
FcgidWrapper "C:/PHP/php-cgi.exe" .php
FcgidInitialEnv PHPRC "C:/PHP"
FcgidInitialEnv PHP_FCGI_MAX_REQUESTS 1000
FcgidInitialEnv TEMP "C:/Apache24/temp"
FcgidInitialEnv TMP "C:/Apache24/temp"
FcgidPassHeader Authorization
ErrorLog "logs/example-error.log"
CustomLog "logs/example-access.log" combined
</VirtualHost>

NOTES ON ASSUMPTIONS

Assumed PHP via php-cgi.exe as the most common mod_fcgid workload on
Windows; adjust wrappers for other runtimes (Python, Ruby, etc.).
Assumed Apache installed at C:/Apache24 and PHP at C:/PHP; update paths
accordingly.
Assumed antivirus exclusions and SSD-backed temp/log directories for
performance.

•

•

•

	Configuring mod_fcgid on Windows Apache 2.4 for High-Concurrency Workloads
	1) Prerequisites and Assumptions
	2) Install and Enable mod_fcgid
	3) Core Apache (MPM) Concurrency on Windows
	4) Mapping Applications with mod_fcgid
	5) Capacity Planning and Sizing
	6) Recommended mod_fcgid Baseline for High Concurrency
	7) PHP-Specific Stability Settings
	8) VirtualHost Example (Production)
	9) Performance Tuning Workflow
	10) Windows-Specific Considerations
	11) Monitoring and Observability
	12) Security and Hardening
	13) Troubleshooting Common Issues
	14) Quick Reference: Key Directives and Suggested Ranges
	15) Validation Checklist
	Appendix: Example Full Minimal Config Snippet
	Notes on Assumptions

		2025-10-01T19:20:49-0400

