CONFIGURING MOD_FCGID ON WINDOWS APACHE 2.4
FOR HIGH-CONCURRENCY WORKLOADS

This guide provides an end-to-end, production-focused setup for mod_fcgid on
Windows with Apache HTTP Server 2.4, optimized for high concurrency. It covers
installation, sizing, tuning, validation, and troubleshooting. Examples emphasize
PHP via php-cgi.exe, but the methodology applies to other FastCGI apps.

1) PREREQUISITES AND ASSUMPTIONS

* Windows Server 2016/2019/2022 (or Windows 10/11) with Apache 2.4.x

installed under C:./Apache24.

* Administrative rights to install modules and create directories.
* For PHP: using php-cgi.exe (Non-Thread-Safe build) located at C:./PHP.
* Antivirus is configured to exclude Apache, PHP, and temp directories from on-

access scanning (important for high 1/0).

2) INSTALL AND ENABLE MOD_FCGID

1.

Download a mod_fcgid binary compatible with your Apache 2.4 and VC
runtime (e.g., from Apache Lounge). Ensure matching architecture (x64) and
Visual C++ runtime.

2. Place mod_fcgid.so into C:/Apache24/modules/.

3. Create a temp and IPC directory for mod_fcgid:

C:/Apache24/temp/fcgid and C: /Apache24/logs/fcgid (ensure Apache
service account has read/write).

. In httpd.conf, enable the module and base settings:

LoadModule fcgid_module modules/mod_fcgid.so
FcgidIPCDir "C:/Apache24/temp/fcgid"
FcgidProcessTableFile "C:/Apache24/logs/fcgid/fcgid_shm"
FcgidWin32PreventOrphans On

FcgidFixPathinfo 1 (often required for PHP PATH_INFO)

. Restart Apache to confirm there are no load errors.

3) CORE APACHE (MPM) CONCURRENCY ON WINDOWS

Windows uses the mpm_winnt MPM (one process, many threads). Concurrency is
primarily controlled via ThreadsPerChild and MaxRequestWorkers.

* ThreadsPerChild: Typically 150-500. Controls worker threads in the single
child process.

* MaxRequestWorkers: In Windows, equals ThreadsPerChild. Set sufficiently
above expected concurrent connections (consider static + dynamic requests).

Example in httpd-mpm.conf or httpd.conf:

ThreadsPerChild 400
MaxRequestWorkers 400
ListenBacklog 1024

Set KeepAlive judiciously. For high concurrency with many short requests, try:

KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 2

4) MAPPING APPLICATIONS WITH MOD_FCGID

For PHP via php-cgi.exe (Non-Thread-Safe), in a global context or VirtualHost:

<IfModule fcgid_module>

Map PHP scripts to FastCGI wrapper
AddHandler fcgid-script .php
FcgidWrapper "C:/PHP/php-cgi.exe" .php

Pass environment to PHP

FcgidInitialEnv PHPRC "C:/PHP"

FcgidInitialEnv PATH "C:/Windows/System32;C:/Windows;C:/PHP"
FcgidInitialEnv TEMP "C:/Apache24/temp"

FcgidInitialEnv TMP "C:/Apache24/temp"

FcgidPassHeader Authorization

</IfModule>

Note: On Windows, PHP_FCGI_CHILDREN is not used by php-cgi; concurrency is
controlled by mod_fcgid process counts.

5) CAPACITY PLANNING AND SIZING

Key parameters to size for high concurrency:

* MaxRequestWorkers (Apache threads): upper bound of concurrent
connections (static + dynamic).

* FcgidMaxProcesses: global limit of all FastCGI processes (all classes).

* FcgidMaxProcessesPerClass: limit per wrapper (e.g., per PHP app).

* FcgidIOTimeout, FcgidConnectTimeout, FcgidBusyTimeout: resilience
under load.

* FcgidProcessLifeTime, FcgidMaxRequestsPerProcess (via app env like
PHP_FCGI_MAX_REQUESTS): recycling.

Simple sizing approach:

1. Estimate peak concurrent dynamic requests (e.g., PHP), call it CD.

2. Determine average requests per CGI process simultaneously served: with
php-cgi on Windows this is one request per process.

3. Set FcgidMaxProcessesPerClass = CD and FcgidMaxProcesses = sum
across apps (with headroom 10-30%).

4. Set MaxRequestWorkers = max(static + dynamic). If static offload (CDN),
lower; otherwise include static.

Example: If 250 concurrent PHP requests are expected and 50 static, choose:
MaxRequestWorkers 350, FcgidMaxProcessesPerClass 260, FcgidMaxProcesses
300.

6) RECOMMENDED MOD_FCGID BASELINE FOR HIGH CONCURRENCY

Add to global scope (httpd.conf) or inside the VirtualHost serving the app:

Global FastCGI process limits

FcgidMaxProcesses 400

FcgidMaxProcessesPerClass 350
FcgidMinProcessesPerClass 4

FcgidProcessLifeTime 3600

FcgidMaxRequestInMem 131072 # 128 KB before temp file
FcgidMaxRequestLen 268435456 # 256 MB uploads

Timeouts and scans
FcgidConnectTimeout 10
FcgidIOTimeout 120

FcgidBusyTimeout 300
FcgidBusyScanInterval 120
FcgidErrorScanInterval 5
FcgidZombieScanInterval 5

Output buffering
FcgidOutputBufferSize 65536
FcgidFlushDelay @

IPC and Windows resiliency
FcgidWin32PreventOrphans On
FcgidIPCDir "C:/Apache24/temp/fcgid"

Notes:

* FcgidMaxRequestLen must be large enough for file uploads; align with app
limits.
* FcgidIOTimeout: must exceed worst-case app time; too low causes 500s.

* FcgidProcessLifeTime: recycle to mitigate memory leaks; match with
PHP_FCGI_MAX_REQUESTS if used.

7) PHP-SPECIFIC STABILITY SETTINGS

Set in Apache via environment (per vhost or global):

FcgidInitialEnv PHP_FCGI_MAX_REQUESTS 1000 # recycle php-cgi
after N requests
FcgidInitialEnv PHP_MAX_EXECUTION_TIME 120

Also in php.ini (C:/PHP/php.ini):

max_execution_time = 120
memory_limit = 256M (or per sizing)
upload_max_filesize = 128M
post_max_size = 128M
cgi.fix_pathinfo = 1

8) VIRTUALHOST EXAMPLE (PRODUCTION)

<VirtualHost *:80>
ServerName www.example.com
DocumentRoot "C:/Sites/example/htdocs”

Static files (serve directly)
<Directory "C:/Sites/example/htdocs">
Options Indexes FollowSymLinks
AllowOverride All

Require all granted

</Directory>

PHP via mod_fcgid

AddHandler fcgid-script .php

FcgidWrapper "C:/PHP/php-cgi.exe" .php
FcgidInitialEnv PHPRC "C:/PHP"
FcgidInitialEnv PHP_FCGI_MAX_REQUESTS 1000
FcgidInitialEnv TEMP "C:/Apache24/temp"
FcgidInitialEnv TMP "C:/Apache24/temp"
FcgidPassHeader Authorization

Per-vhost tuning (optional override)
FcgidMaxProcessesPerClass 260
FcgidMinProcessesPerClass 6
FcgidIOTimeout 120

ExrrorLog "logs/example-error.log"
CustomLog "logs/example-access.log" combined
</VirtualHost>

9) PERFORMANCE TUNING WORKFLOW

1.

Baseline: Start with the recommended settings above. Confirm stability with a
smoke test.

. Load test: Use a realistic tool (k6, JMeter, wrk) simulating think time,

connection reuse, and mixed payloads (static+dynamic).

. Measure under increasing concurrency: p95/p99 latency, error rate, CPU,

memory, context switches, and php-cgi.exe count.

. Adjust size:

o If 503/500 under load with php-cgi saturation: raise
FcgidMaxProcessesPerClass and FcgidMaxProcesses (watch RAM).

o If long queues but spare CPU: increase MaxRequestWorkers and
corresponding Fcgid* limits.

o If memory pressure: reduce processes, shorten ProcessLifeTime, and
lower PHP memory_limit or app caches.

. Timeouts: Tune FcgidIOTimeout and BusyTimeout to be slightly above worst-

case app times to avoid premature Kills.

6. Recycling: Set PHP_FCGI_MAX_REQUESTS and FcgidProcessLifeTime to
mitigate leaks; stagger restarts under load.

10) WINDOWS-SPECIFIC CONSIDERATIONS

* File paths: Use forward slashes or escaped backslashes. Quote paths with
spaces.

* Antivirus: Exclude C:/Apache24, C:/PHP, site directories, and C:/Apache24/
temp from real-time scanning.

* I/0 temp dir: Place FcgidIPCDir and TEMP on a fast local SSD. Avoid network
shares for code or temp.

* Service account: Ensure the Apache service account has Modify permissions
on temp/log/IPC paths.

* Event Viewer: Check Windows Event Viewer for crashes of php-cgi.exe during
stress.

11) MONITORING AND OBSERVABILITY

* mod_status: Enable server-status to view busy/idle workers and request
states.
LoadModule status_module modules/mod_status.so
<Location /server-status> SetHandler server-status Require
local </Location>

* Logs: Inspect Apache error.log for mod_fcgid timeouts (IOTimeout,
BusyTimeout) and spawn failures.

* Process count: Monitor php-cgi.exe instances to confirm
FcgidMaxProcessesPerClass behavior.

* App metrics: Expose application response times and error rates; correlate
with web server metrics.

12) SECURITY AND HARDENING

* Limit uploads: Set FcgidMaxRequestLen, post_max_size, and
upload_max_filesize consistently.

* Restrict execution: Use file system ACLs to limit where CGI binaries can
execute.

* Timeouts: Prefer conservative timeouts plus app-level circuit breakers.

* Headers: Add security headers via mod_headers (X-Frame-Options, X-
Content-Type-Options, etc.).

* Isolation: Consider separate VirtualHosts and wrappers for different apps to
isolate resource pools.

13) TROUBLESHOOTING COMMON ISSUES

* 500 with Premature End of Script Headers: Increase FcgidIOTimeout; verify
php.ini syntax; check PHP error logs.

* 503 Service Unavailable: FcgidMaxProcessesPerClass too low; raise limits or
reduce concurrency.

* Spawn failed / No such file: Wrong path quoting or permissions; verify
FcgidWrapper path and service account rights.

- Stalls on uploads: Increase FcgidMaxRequestLen; ensure temp directories
have space and correct permissions.

* Memory growth: Lower PHP memory_limit; decrease
PHP_FCGI_MAX_REQUESTS or FcgidProcessLifeTime for faster recycling.

14) QUICK REFERENCE: KEY DIRECTIVES AND SUGGESTED RANGES

FcgidMaxProcesses Global FastCGI process cap 1.2 x peak dynamic concurrency
FcgidMaxProcessesPerClass Per app/wrapper cap = peak app concurrency
FcgidMinProcessesPerClass Warm pool size 2-8

FcgidIOTimeout Backend read/write timeout 60-180s (app-dependent)
FcgidBusyTimeout Kill long-busy processes 180-600s

FcgidProcessLifeTime Recycle age 1800-7200s
FcgidOutputBufferSize App output buffer 64 KB

FcgidMaxRequestLen Max upload size 256 MB (align with app)
ThreadsPerChild Apache worker threads 200-600

MaxRequestWorkers Max concurrent connections Match ThreadsPerChild

15) VALIDATION CHECKLIST

* Apache starts without errors; mod_fcgid loaded.
* server-status shows expected worker counts.
* Load test achieves target concurrency with acceptable p95 latency.

* php-cgi.exe process count scales up to FcgidMaxProcessesPerClass and
recycles over time.

* No persistent 500/503 errors under steady load.

APPENDIX: EXAMPLE FULL MINIMAL CONFIG SNIPPET

httpd.conf (relevant parts)

LoadModule fcgid_module modules/mod_fcgid.so
LoadModule status_module modules/mod_status.so
ThreadsPerChild 400

MaxRequestWorkers 400

KeepAlive On

MaxKeepAliveRequests 100

KeepAliveTimeout 2

FcgidIPCDir "C:/Apache24/temp/fcgid"
FcgidProcessTableFile "C:/Apache24/logs/fcgid/fcgid_shm"
FcgidWin32PreventOrphans On
FcgidFixPathinfo 1

FcgidMaxProcesses 400
FcgidMaxProcessesPerClass 350
FcgidMinProcessesPerClass 6
FcgidIOTimeout 120

FcgidBusyTimeout 300
FcgidConnectTimeout 10
FcgidProcessLifeTime 3600
FcgidOutputBufferSize 65536
FcgidMaxRequestLen 268435456

<Location /server-status> SetHandler server-status Require local
</Location>

VirtualHost for PHP app

<VirtualHost *:80>

ServerName www.example.com
DocumentRoot "C:/Sites/example/htdocs”

<Directory "C:/Sites/example/htdocs"> Options Indexes
FollowSymLinks AllowOverride All Require all granted </Directory>
AddHandler fcgid-script .php

FcgidWrapper "C:/PHP/php-cgi.exe" .php
FcgidInitialEnv PHPRC "C:/PHP"

FcgidInitialEnv PHP_FCGI_MAX_REQUESTS 1000
FcgidInitialEnv TEMP "C:/Apache24/temp"
FcgidInitialEnv TMP "C:/Apache24/temp"
FcgidPassHeader Authorization

ExrrorLog "logs/example-error.log"

CustomLog "logs/example-access.log" combined
</VirtualHost>

NOTES ON ASSUMPTIONS

* Assumed PHP via php-cgi.exe as the most common mod_fcgid workload on
Windows; adjust wrappers for other runtimes (Python, Ruby, etc.).

* Assumed Apache installed at C:/Apache24 and PHP at C:/PHP; update paths
accordingly.

* Assumed antivirus exclusions and SSD-backed temp/log directories for
performance.

DQULCQ %Ctﬂ Jn "m,h.f%" v

	Configuring mod_fcgid on Windows Apache 2.4 for High-Concurrency Workloads
	1) Prerequisites and Assumptions
	2) Install and Enable mod_fcgid
	3) Core Apache (MPM) Concurrency on Windows
	4) Mapping Applications with mod_fcgid
	5) Capacity Planning and Sizing
	6) Recommended mod_fcgid Baseline for High Concurrency
	7) PHP-Specific Stability Settings
	8) VirtualHost Example (Production)
	9) Performance Tuning Workflow
	10) Windows-Specific Considerations
	11) Monitoring and Observability
	12) Security and Hardening
	13) Troubleshooting Common Issues
	14) Quick Reference: Key Directives and Suggested Ranges
	15) Validation Checklist
	Appendix: Example Full Minimal Config Snippet
	Notes on Assumptions

		2025-10-01T19:20:49-0400

