Generating ECDSA Encryption Keys for Webservers using OpenSSL on Windows

ECDSA (Elliptic Curve Digital Signature Algorithm) is a popular encryption technique for web servers to secure communication and data integrity. OpenSSL is a versatile, free, and open-source toolkit for working with cryptographic protocols. In this guide, we will walk through the process of generating ECDSA keys for a web server using OpenSSL on a Windows platform.

Pre-requisites:

- 1. Install OpenSSL on your Windows machine. The latest version can be downloaded from https://slproweb.com/yum/openssl.php. Follow the installation instructions for Windows.
- 2. Ensure you have a basic understanding of cryptography and SSL/TLS principles.

Step 1: Choose an Elliptic Curve

OpenSSL supports various elliptic curves for ECDSA key generation. The most commonly used curves for security are:

Curve Key Size Name

256 bits eccp256 secp256r1, prime256v1

384 bits eccp384 secp384r1

521 bits eccp521 secp521r1

For this example, we will use the 256-bit secp256r1 curve. You can change the curve according to your security requirements.

Step 2: Generate the Private Key

Open the Command Prompt on your Windows system and navigate to the OpenSSL bin directory. You can do this by:

- 1. Pressing Win + R to open the Run dialog.
- 2. Typing cmd and pressing Enter.
- 3. Navigating to the OpenSSL bin directory using the cd command, for example:

```
cd "C:\OpenSSL-Win64\bin"
```

Now, run the following command to generate the private key:

```
openssl ecparam -out ec_private_key.pem -name secp256r1 -genkeys
```

This command will create a private key file named ec_private_key.pem in the current directory.

Step 3: Generate the Public Key

To extract the public key from the private key, use the following OpenSSL command: openssl pkey -in ec_private_key.pem -pubout -out ec_public_key.pem

This will generate a public key file named ec_public_key.pem containing the x and y coordinates of the corresponding point on the elliptic curve.

Step 4: Configure Your Web Server

The generated ECDSA keys can now be used on your web server. The steps to configure them vary depending on the web server software you are using. Here are the general instructions for popular web servers:

• **Apache with OpenSSL**: Add the following lines to your Apache configuration file (e.g., httpd.conf):

SSLEngine on SSLProtocol all -SSLv2 -SSLv3 SSLHonorCipherOrder on SSLCipherSuite ECDHE-ECDSA-CHACHA20-POLY1305 SSLCertificateFile "<path_to_ec_public_key.pem>" SSLCertificateKeyFile "<path_to_ec_private_key.pem>"

David Keith Jr "mrdj" 🔪