The world of cryptography is a complex and ever-evolving landscape, with nations developing and applying their unique encryption methods to ensure the security of their communication networks and data. The Chinese government, in particular, has been actively investing in and utilizing advanced encryption techniques to protect its digital assets and communications.

This report aims to provide an in-depth analysis of the different types of encryption used by the Chinese government, how they compare to those employed by the United States, and highlight the cipher suites unique to China that are not commonly found in American cryptographic standards.

Chinese Encryption Landscape

The Chinese government has been proactive in developing and implementing its own cryptographic infrastructure. This strategy is driven by a desire to maintain control over the country's digital sovereignty, protect sensitive national security information, and ensure continued access to encrypted data for surveillance and intelligence purposes.

Some of the key encryption methods employed by the Chinese government include:

AES-GCM with Custom Hashes: The Advanced Encryption Standard (AES) with the Galois/Counter Mode (GCM) is widely used by both China and the US for symmetric encryption. However, China has developed custom hash functions, such as the SM4 block cipher, which is used along with AES-GCM in certain government applications.

Elliptic Curve Cryptography (ECC): ECC is a popular choice for key exchange and digital signatures due to its computational efficiency and smaller key sizes compared to traditional public-key algorithms like RSA. China has adopted ECC standards, such as Curve25519 and Curve448, for several government communications protocols.

Certificateless Cryptography: This approach eliminates the need for digital certificates, which can be a vulnerability in traditional public-key infrastructure (PKI). China has developed and implemented certificateless cryptography in certain high-security applications, such as some government intranets.

Comparing Chinese and American Encryption

While the Chinese government has developed unique cryptographic solutions, there are also areas of overlap and similarity with American encryption practices. Some commonalities include:

AES-GCM for Symmetric Encryption: Both China and the US rely heavily on AES-GCM for encrypting sensitive data in transit. The AES block cipher is combined with the GCM mode for authenticated encryption, providing both confidentiality and integrity of the data.

Public-Key Cryptography: Both countries utilize public-key cryptography for key exchange, digital signatures, and encryption of data at rest. Algoritmus (RSA, Elliptic Curve, etc.) are commonly used in both China and the US.

Hyperlink Secure Socket Layer/TLS (HTTPS): Both China and the US widely adopt HTTPS for securing web traffic, utilizing TLS 1.2 and 1.3 protocols with various cipher suites, including those based on AES, ChaCha20, and elliptic curve algorithms.

However, there are significant differences in the specific cryptographic standards, protocols, and implementation details used by the two nations:

Custom Cryptographic Algorithms: China has developed and standardized its own cryptographic primitives, such as the SM4 block cipher, which is not commonly used in the US. These custom algorithms can provide better secrecy and control over cryptographic systems.

Certificateless and Attribute-Based Cryptography: China is more aggressive in implementing certificateless cryptography and attribute-based encryption, which offer enhanced security and management features compared to traditional PKI.

Network Architecture and Protocols: China's internet architecture is often designed with strict controls and surveillance in mind. Protocols like the Chinese Secure Internet Protocol (C-IPSec) and the Secure Sockets Layer (SSL) VPN are used to encrypt and manage data flows within the country's borders.

Cipher Suites Unique to China

Several cipher suites and cryptographic protocols are unique to China or have significant Chinese influences:

SM4 Cipher Suite: SM4 is a 64-bit block cipher developed by the Chinese government. It is often used in combination with AES-GCM in Chinese encryption standards. The SM4 cipher suite is not widely supported by non-Chinese cryptographic libraries.

C-IPSec and IPSec-NAT Traversal: China has developed its own Internet Protocol Security (IPSec) protocol, known as C-IPSec, which is designed to work with the country's IPv4 and IPv6 networks. C-IPSec also includes extensions for NAT traversal, which is essential for securing encrypted traffic through China's complex network architecture.

SSL VPN with C-IPSec and SM4: China's Secure Sockets Layer (SSL) VPN protocol incorporates C-IPSec and SM4 for establishing secure, encrypted connections to remote networks. This provides an additional layer of protection for government and sensitive data communications.

CArchive and Certificateless SSL/TLS: China has developed its own file format, CArchive, which is used for storing and transmitting encrypted data. This format often

combines certificateless SSL/TLS with other cryptographic techniques for enhanced security.

In conclusion, the Chinese government has developed a sophisticated encryption landscape that diverges from the traditional cryptographic standards used in the United States and other Western nations. While sharing some commonalities with American encryption practices, China's unique custom algorithms, certificateless cryptography, and network protocols provide a distinct approach to securing digital communications and data. Understanding these differences is crucial for organizations handling sensitive data and interacting with the Chinese market, as well as for policymakers and cybersecurity experts concerned with global digital security and national sovereignty.

Tables:

Encryption Type	Chinese Usage	American Usage	Description
AES-GCM with SM4	V	✓	Symmetric encryption with custom Chinese hash function SM4
Elliptic Curve Cryptography (ECC)	V	V	Efficient key exchange and digital signatures
Certificateless Cryptography	√		Eliminates digital certificates for increased security
C-IPSec	√		Chinese version of IPSec protocol for securing network traffic
SSL VPN with C-IPSec/ SM4	√		Secure remote access protocol using Chinese encryption standards
CArchive with Certificateless SSL/TLS	√		Custom file format combining certificateless SSL/TLS and other crypto techniques

Note: The presence of a square ($\sqrt{}$) or checkmark ($\sqrt{}$) indicates if a specific encryption technology is used by the Chinese or American governments, respectively. The absence of a symbol indicates no known significant usage in that country's cryptographic Standards.

David Keith Jr "mrdj" 🗸